Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Bin Zhou,^{a,b} Yong Ni,^a Peng-Fei Zhang^a* and Yuan-Jiang Pan^b

^aDepartment of Chemistry, Hangzhou Teachers College, Hangzhou 310036, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: zpf100@163.com

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.008 Å R factor = 0.055 wR factor = 0.134 Data-to-parameter ratio = 10.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Chloro-N-(2,3,4,6-tetra-O-pivaloyl- β -D-galacto-pyranosyl)benzylideneamine

The title compound, $C_{33}H_{48}CINO_9$, is an important chiral template for the synthesis of α -amino acids. The galactopyranose ring adopts a chair conformation. The crystal structure contains intermolecular $C-H \cdots O$ interactions. Received 6 September 2004 Accepted 23 September 2004 Online 30 September 2004

Comment

The *N*-(*O*-pivaloyl- β -D-galactopyranosyl)benzylideneamines, which are effective chiral templates, have been used for the stereoselective synthesis of α -amino acids (Kuns *et al.*, 1991). These authors have tried to rationalize the stereoselection during the Strecker reaction, by NOE NMR experiments on the aldimines. To further understand these processes, a crystallographic analysis of the title compound, (I), has been carried out and the results are presented in this paper.

The molecular structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The galactopyranose ring assumes a chair conformation in the solid state and is in the β anomeric configuration. The torsion angles N1–C6–C7–C12, C6–N1–C1–O1 and C6–N1–C1–C2 are 1.40 (7), 146.95 (3) and 94.47 (4)°, respectively. The N1–C6 distance of 1.260 (6) Å is consistent with a C=N double bond. Other bond lengths and angles are unexceptional.

The crystal structure is stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonds (Table 1).

Experimental

To a solution of 2,3,4,6-tetra-*O*-pivaloyl- β -D-galactopyranosylamine (5.15 g, 10 mmol) in 2-propanol (25 ml), 4-chlorobenzaldehyde (2.11 g, 15 mmol) and 15 drops of acetic acid were added. After 1 h, 4-chloro-*N*-(2,3,4,6-tetra-*O*-pivaloyl- β -D-galactopyranosyl)benzyl-ideneamine precipitated from the 2-propanol solution, was collected by filtration and rapidly washed with ice-cold 2-propanol (m.p. 415–418 K, determined on an X4-Data microscopic melting point apparatus). ¹H NMR (recorded on a DMX 500 MHz AVANCE spectrometer in CDCl₃, using TMS as an internal standard; p.p.m.): 8.39 (1H), 7.68 (1H), 7.38 (1H), 5.52 (1H), 5.26 (2H), 4.68 (1H), 4.28 (1H), 4.16 (1H), 4.09 (1H), 1.04–1.29 (36H).

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

organic papers

Crystal data

C33H48CINO9 $M_r = 638.20$ Orthorhombic, P212121 a = 10.9898 (4) Åb = 15.7406 (7) Åc = 20.7781 (6) Å V = 3594.3 (2) Å³ Z = 4 $D_x = 1.179 \text{ Mg m}^{-3}$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.921, T_{\max} = 0.982$ 31 396 measured reflections

Refinement

Refinement on F^2
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.055 \\ wR(F^2) &= 0.134 \end{split}$$
S=1.014014 reflections 398 parameters H-atom parameters constrained

Table 1

Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$\mathbf{D} \cdots \mathbf{A}$	D−H···A
C3-H3···O9 ⁱ	0.97	2.63	3.479 (4)	147
C8-H7···O7 ⁱⁱ	0.97	2.47	3.379 (5)	156
$C15{-}H11{\cdots}O3^{iii}$	0.97	2.62	3.403 (7)	138
Symmetry codes: (i) $\frac{3}{2}$ -	$-x, 1-y, z-\frac{1}{2}$	$\frac{1}{2}$; (ii) $x - \frac{1}{2}, \frac{1}{2} - y$	$y, 1-z;$ (iii) $\frac{1}{2}+x,$	$\frac{1}{2} - y, 1 - z.$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.7 - 27.5^{\circ}$

 $R_{\rm int} = 0.065$

 $\theta_{\rm max} = 27.5^{\circ}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

3568 Friedel pairs

Flack parameter = 0.1 (1)

Cell parameters from 22 991

 $w = (4F_o^2)/[0.0024F_o^2 + \sigma(F_o^2)]$

Absolute structure: Flack (1983),

H atoms were placed in calculated positions, with C-H = 0.97 Å, and included in the final cycles of refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows 01 N1 C11 C10 CI1 C13

A view of the title molecule, showing the atomic numbering scheme and 30% probability displacement ellipsoids.

(Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

The authors thank the National Natural Science Foundation of China (No. 203760160) and the Natural Science Foundation of Zhejiang Province (No. 202075).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kuns, H., Sager, D., Schanzenbach, D. & Decker, M. (1991). Liebigs Ann. Chem. pp. 649-654.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.60. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.

Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.

